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ABSTRACT: The integral transforms are suitable 

for mathematical and physical application. Integral 

transforms are extremely effective mathematical 

methods for addressing a wide range of complex 

issues in science and engineering, including issues 

with population growth, heat conduction, motion of 

particles under gravity, vibration of beams, and 

radioactive decay. The solution of various 

engineering and scientific problems can be easily 

determined by representing these problems in 

integral equations. There are numerous analytical 

and numerical methods available for solving 

various types of integral equations. In this paper, 

we find exact solutions of bacteria growth and 

Tumoursize growth Models through an Integral 

transformation, namely the Tarig Transform. For 

demonstrating the effectiveness of Tarig transform, 

we consider some numerical examples. The results 

of these numerical examples shows that Tarig 

transform provides the analytical solution of 

bacteria growth and tumour size growth models 

without doing complicated computational work.It 

has been revealed that the Tarig transform is a 

practical, dependable, and simple technique for 

obtaining solutions to the growth problems. 

Keywords: Tarig Transform, Inverse Tarig 

Transform, Differential Equations, Bacteria 

Growth and Tumour Growth Models. 

 

I. INTRODUCTION: 
Now a day, Integral transforms are the 

best appropriate and easy mathematical process for 

finding advance problems solutionarose in several 

fields like technology, science, social sciences, 

commerce, economics and engineering. Integral 

transforms provide exact solution of problem 

without lengthy calculations that is the vital feature 

of integral transforms.Due to this vital feature of 

the integral transforms various investigators are 

involved to this field and acquaint with many 

integral transforms. Differential equations are 

involved to examine the real-life problems; 

including Biological growth, Tumour growth, Heat 

transfer, Carbon dating, Compound interest, 

Chemical reaction, Mixture, Compartment, Electric 

Circuit, trajectory and vibrations problems 

[1].Further most problems in the seareas are 

modeled via ordinary linear differential equations 

and made more reasonable.    There occur numerous 

mathematical and analytical methods in the 

literature for solving the different forms of 

differential equations [2-8].Afterward, integral 

transforms methodologies provide accurate 

solutions of the problems thus various researchers 

are developing new integral transforms [9-17]. 

The study of growth problem is one of the 

challenging problems in many areas. Growth 

problems can be usually used in the field of 

sciences, social science and among other subjects. 

Various masses in the real-worlds growth at a 

quantity proportional to their size. Various integral 

transforms have been solved the population growth 

problems. As various investigators involved to 

presenting the new integral transforms at the same 

time and as well applying the transforms to various 

fields, various equations in different domain. 

Cooling law of Newton’s problem was solved by 

Sanap and Patil [18], with the help of Kushare 

transform.Tarig M.Elzaki and Salih M. Elzaki [20-

22], introduced new transform known as Tarig 

transform and studied for finding the solution of 

the application of differential equations. Gnanavel 

et al.[23], found the solutionof the applications of 

linear Volterra integral equation of first kind by 
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using Tarig transform. Aggarwal and other scholars 

[24-33], studied the growth and decay models 

using various integral transformations such as 

Laplace transform, Mohand transform, Kamal 

transform, Aboodh transform, Mahgoub transform, 

Sadik transform, Elzaki transform, Shehu 

transform, Sumudu transform and Sawi transform. 

Aggarwal and other scholars [34-39], 

comparatively studied various integral 

transformations and Mohand transform and solved 

the system of ordinary differential equations using 

them. Patil [40], have been used (Laplace and 

Shehu) transforms to gain the solution of chemical 

science problems. Deshmukh et al. [41], utilized 

Emad Sara transform to solve the problems related 

to population growth and decay. Dinesh Thakur 

and P.C. Thakur [42], Employing Upadhyaya 

Transform for finding the solution of linear second 

kind Volterra Integral equation. Thakur et al. [43], 

studied the linear Volterra integral equation (V.I.E) 

by employing Iman transform. Patil et al. [44], used 

the Applications of Karry-Kalim-Adnan 

Transformation (KKAT) in growth and decay 

problems. Recently, Aggarwal [45], obtained the 

solution of the Bacteria Growth Model via Rishi 

Transform.  

 

Growth Model: Mathematically, the equation of 

growth is a first order linear ordinary differential 

equation. Growth can be expressed as the first 

order derivative of amount of physical material 

 tM is directly proportional to quantity of 

physical material  tM at time t hour. The 

living growth such as growth of plant, growth of 

bacteria, growth of a species, growth of cell, 

growth of an organ etc. are governed by linear 

ordinary differential equation of first order as 

below: 

 
 tM

dt

tMd
  

Therefore,  

 
 

  











0timeat0Conditioninitialthethrough

,

0 tMM

tM
dt

tMd


     (1) 

where,  tM  and 0M  are the quantity of physical 

material at the time t and 0t , that is the 

exponential growth at rate proportional to its 

quantity material. be the proportionality rate 

andthe equation (1) is called the act of Natural 

Growth Model. 

The main purpose of this paper is to determine the 

solution of the bacteria growth and tumour growth 

models using newly established Tarig transform 

Technique and its efficiency to solve bacteria 

growth and tumour growth problems effectively. 

 

II. TARIG TRANSFORM,ITS 

PROPERTIES AND TABULATED 

VALUES[20 - 23] 
A new integral transform introduced and studied by 

Elzaki et al.called Tarig transform. We consider 

function  tf , in the form of set A, which is 

expressed in exponential form as below: [7], 

     













 ),0[1,,0,,: 21 XtifeMtfMtfA

j

t

j

        (2) 

where, M be a finite number that is constant and 

21  and  may be finite and infinite. 

 

2.1. Tarig Transform Definition [20-22] 

2.1A. Definition of Tarig Transform: Tarig 

transform is a form of integral transform that 

presented and deliberated by Elzaki et al., Tarig 

transform s y mb o l i z ed  b y .T ,  d e f i ned  

b e lo w a s :  

     0,0)(
1

0

2

 












vtvBdttfe
v

tfT v

t

     (3) 

2.1B. Definition of Inverse Tarig Transform: 

Inverse of Tarig transform from equation (3), 

defined as below: 

    0,0,)]([
1 1

0

1 2














 

 











 vtvBTdttfe
v

Ttf v

t

    (4)  

with the help of Tarig transform, we can easily 

solve the mathematical models in health sciences, 

environmental sciences and biochemistry, 

containing ordinary linear differential equation of 

first order. The aim of this study is to shows the 

applicability of this interesting transform and 

operator )(vB  defined by the above integral 

equations. 
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1.2. Derivative of Tarig Transform: 

2.2A. Ordinary Derivative of Tarig Transform: [21] 

  
 

 
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 (5) 

 

2.2.B. Tabulated Values: [23] 

Chart for Tarig transform and Inverse of Tarig transform that often used for frequently encountered 

mathematical functions are given in Table -2.2.B1 and Table -2.2.B2. 

 

Table 2.2.B1: Standard Results 

 
 

Inverse Tarig Trans form of function  tf  defined as     vBTtf 1  and Some Standard results of 

Inverse Tarig transform of the functions are listed in Table 2.2.B2 

               

Table 2.2.B2: Standard Results 

 
 

III. BACTERIA GROWTH AND 

TUMOURSIZE GROWTH MODELS 
Consider the Malthus model [25-29] for 

the significance of the growth of the bacteria and 

tumour size in a certain culture consulting to 

Malthus model, at which bacteria grow and tumour 

size grow rate in a certain culture is proportional to 

the quantity of bacteria present and tumoursize 

present at the time t . Generally bacteria growth and 

tumour size growth problems expressed as the rate 

proportional to the amount of bacteria and tumour 

size  tM , subsequently time t  hours in the first 

order form of differential equation,  

Mathematically, bacteria growth and tumour size 

growth model defined as below from the equation 

(1) 

 
 tM

dt

tMd
 ; through the condition 

  00 MM   at time 0t .  

 (6) 

The equation of bacteria growth and tumour size 

growth (6) is a first order linear ordinary 

differential equation. Where,  tM  and 0M  are the 
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quantity of bacteria and tumour size at the time t
and time 0t , which are in the nature of 

exponential growth at rate proportional to its 

quantity of bacteria and tumour size.  be the 

proportionality rate and the equation (6) is called 

the act of natural bacteria growth and tumour size 

growth. 

 

IV. TECHNIQUE: 
Tarig transform technique for finding the solution 

of Bacteria growth and Tumour Size growth 

Models. 

Relating t h e  Tarig transform to the exponential 

growth model given in equation (6) both the sides, 

we get 

 
  tMT

dt

tMd
T 








  (7) 

Substituting the Tarig transform of the first 

derivative value from equation (5) in equation (7), 

we obtain 

 
 vB

v

M

v

vB
.

)0(
2


          

 (8) 

Using the condition that at a time 0t , the 

quantity of bacteria and tumour be   00 MM  , 

in equation (8) and after simplification, we obtain  

  













20
1 v

v
MvB


   (9) 

Operating inverse Tarig Transform jointly to the 

equation (9) and using the table–2.2.B2, 

we obtain 

   









 

2

1

0

1

1 v

v
TMvBT


 

  teMtM 

0    (10) 

 

which is the required number of bacteria 

and tumour size in a certain culture at time t . Tarig 

transform technique be one of the type of integral 

transform that provides abundant suitability in 

solving first order differential equations and obtain 

solution accurately that is coinciding with the 

existing result obtained by using the other integral 

transform. 

 

V. NUMERICAL APPLICATIONS: 
In this fragment, Tarig transform 

technique have been applied to find the solution of 

the general form of bacteria growth and tumour 

size growth model. Some applications have been 

used to establish the effectiveness of Tarig 

transform technique. 

 

5.A. BACTERIA GROWTH: 

Application-5.A1 : 

Bacteria in a certain culture increases at a 

rate proportional to the number present. If the 

number of bacteria increases from 1000 to 2000 in 

one hour, estimate the number of bacteria present 

in a certain culture at the end of 1.5 hours. 

Above stated bacteria growth application, 

mathematically, be expressed at rate proportional to 

the number of bacteria present in a certain culture 

as below [45]; 

 
 tM

dt

tMd
 ; through the initial condition 

  00 MM   at 0t    (11) 

Here, constant of proportionality be denoted by   

and the number of bacteria at time t  and 0t be 

denoted by M  and 0M . 

Relating Tarig Transform to t he  equation (11) 

both sides, we obtain 

 
  tMT

dt

tMd
T 








  (12) 

Substituting the Tarig Transform values of the first 

derivative from equation (5) in equation (12), we 

obtain  

 
 vB

v

M

v

vB
.

)0(
2

   (13) 

Using the condition that at a time 0t , the 

quantity of bacteria be   10000 0  MM , in 

equation (13) and after simplification, we obtain  

 
 vB

v

M

v

vB
.0

2
  

 
 vB

vv

vB
.

1000
2

   (14) 

After re-arranging, we obtain  

  











21
1000

v

v
vB


  (15) 

Operating Inverse Tarig transform jointly to the 

equation (15) and using the table – 2.2.B2,we obtain 

   









 

2

11

1
1000

v

v
TvBT


 

  tetM 1000   (16) 

Also, attime 0t  and 1t , the number of 
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bacteria are    00 MM   and   20002 M ;  

Substituting these values in equation (16), we 

obtain 
e10002000   

2 e  

  693.02ln     

Hence,  693.0   (17) 

Again, at time 5.1t , the number of bacteria

 5.1M  present in a certain culture be obtain by 

substituting the values of Mt and,   in the 

equation   teMtM 
0 . 

Therefore,    ;10005.1 396.05.1eM   

  ;70.28255.1  M  

Hence,   70.28255.1 M . (18) 

 

which is the required number of bacteria present in 

a certain culture at the time t . 

This obtain solution by using Tarig 

transform technique is nearly coinciding with the 

existing result obtained by using the Rishi 

Transform [45]. 

 

Application-5.A2: 

Bacteria in a certain culture rises at a rate 

proportional to the quantity of bacteria presently 

living in a certain culture. If after two years, 

bacteria in a certain culture have doubled, and after 

three years’ bacteria in a certain culture is 20,000, 

estimate the number of bacteria initially in a certain 

culture. 

Above stated bacteria growth application, 

mathematically be expressed as the rate 

proportional to the number of bacteria as below 

[45]; 

 
 tM

dt

tMd
 ; through the condition 

  00 MM   at 0t    (19) 

 

Here, constant of proportionality be denoted by   

and the number of bacteria at time t  and 0t be 

denoted by M  and 0M .  

Relating Tarig transform to t he  equation (19) both 

sides, we obtain: 

 
  tMT

dt

tMd
T 








  (20) 

Substituting the Tarig transform values of the first 

derivative from equation (5) in equation (20), we 

obtain  

 
 vB

v

M

v

vB
.

)0(
2

   (21) 

Using the condition that at time 0t , the quantity 

of bacteria be   00 MM  in equation (21) and 

after simplification, we obtain  

 
 vB

v

M

v

vB
.0

2
    (22) 

After re-arranging, we obtain 

  











21
1000

v

v
vB


  (23) 

Operating Inverse Tarig transform jointly to the 

equation (23) from the table – 2.2.B2,weobtain 

   









 

2

11

1
1000

v

v
TvBT


 

  teMtM 
0   (24) 

Also, at the time 2t , the number of bacteria be 

  022 MM  ;  

Substituting these values in equation (24), we 

obtain 
2

002 eMM   

22  e  

3466.0    

Hence,  3466.0   (25) 

 

Again, atthe time 3t , the number of bacteria be

  000,203 M ; substituting the values of 

Mt and,   in equation   teMtM 
0 , we 

obtain 
  ;000,20 346.03

0eM  

;)82647.2(000,20 0M  

Hence, .70750 M    (26) 

 

which is the required number of bacteria initially in 

a certain culture time t . this obtain solution by 

using Tarig transform technique is nearly 

coinciding with the existing result obtained by 

using the Rishi Transform [45]. 

 

5.B. TUMOUR GROWTH MODEL 

Application-5. B1:  

One model used in medicine is that the 

rate of growth of tumour is proportional to the size 

of the tumour. Write a differential equation 
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satisfied by M , the size of tumour in mm as a 

function of time t ,  the tumour is 5mm across at 

time 0t . Find the solution in addition if the 

tumour is 8mm across at time 3t , find particular 

solution. 

Above stated growth problem mathematically, be 

expressed at rate proportional to the size of tumour 

as below [44]; 

 
 tM

dt

tMd
 ; through the initial condition 

  00 MM   at 0t    (27) 

Here, constant of proportionality be denoted by   

and the size of tumour at time t and 0t be 

denoted by M and 0M .  

Relating Tarig transform to t he  equation (27) both 

sides, we obtain 

 
  tMT

dt

tMd
T 








  (28) 

Substituting the Tarig transform values of the first 

derivative from equation (5) in equation (28), we 

obtain  

 
 vB

v

M

v

vB
.

)0(
2

   (29) 

Using the condition that at a time 0t , the size of 

tumour be   00 MM  in equation (29) and over 

simplification, we obtain  

 
 vB

v

M

v

vB
.0

2
    (30) 

After re-arranging, we obtain  

  











20
1 v

v
MvB


   (31) 

Operating Inverse Tarig transform jointly to the 

equation (31) from the table – 2.2.B2, we obtain 

   











20
1 v

v
TMvBT


 

  teMtM 
0   (32) 

Also, at 0t , the size of tumour be 

mmM 50  ;  

Substituting these values in equation (32), we 

obtain 

  tetM 5   (33) 

Again, at a time 3t , the size of tumour be

  mmM 83  ; substituting the values of 

Mt and in equation (33), we obtain 

;58 3e  

5

83  e  

  1567.06.1ln
3

1
   

Putting the value of 3t  and 1567.0 in 

equation   tetM 5 , we get 

    4701.01567.03 55 eetM   

    3893.660054201.15 tM  

  3893.6tM  

Hence,   3893.6tM   (34) 

which is the required particular solution. 

This obtain solution by using Tarig transform 

technique is nearly coinciding with the existing 

result obtained by using the (KKAT) Transform 

[44]. 

 

VI. DISCUSSION AND 

CONCLUSION: 
 In this work, we have successfully applied 

Tarig transform technique for finding the 

solution of bacteria growth and tumour growth 

models. 

 Applicability and competency of Tarig 

transform is demonstrated by giving some 

mathematical application of bacteria growth 

and tumour growth models. 

 We observed that the result depict that the 

Tarig transform is a very efficient integral 

transform for solving the application of 

bacteria growth and tumour size growth 

models. 

 Tarig transform provides the analytical 

solution of the application of bacteria growth 

and tumour size growth models without doing 

complicated calculation work as compared to 

other integral transform. 

 In future, the suggested scheme can be applied 

for determining the solutions of radioactive 

substance decay model, model of chemical 

kinetic, traffic model, electric circuit model, 

compartment models, diabetes detection 

model, compound interest and heat conduction 

problems related to various different fields. 
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